Table of Commercial Isotopes of Working Group 3: Radioisotopes for Applications Code: Supply / Demand Impact: economic / multiple industries / multiple populations 1. Massive 1. Demand > supply 2. Demand = supply 2. Moderate 3. Demand < supply 3. Minimal | Nuclides | Main
Applications | Producer | Status of Supply | Missing | Current
Demand | Future
Demand | Impact | Special
Considerations | Options for
increased
availability | |----------|--|-------------------------|--|--|-------------------|------------------|--------|--|---| | Am-241 | Process control,
analysis, well
logging,
Safety | Russia | single source | No disposal
pathway | 1 | 1 | 1 | linked to foreign weapons reprocessing | Recycle of Am/Be
sources at LANL
Activate LANL Am
production line | | Ba-133 | Process Control
& Security | RIAR | Single Source | Ok | 2 | 2 | 2 | Enriched Ba-132
needed | ORNL could produce – reactor irradiation | | C-14 | Geochem,
Health Physics,
Process control | Russia | Multiple Sources | Ok | 2 | 2 | 3 | N/A | ORNL & INL | | Cd-109 | Analysis,
Process Control | Multiple cyclotrons | Multiple sources | Ok | 2 | 2 | 2 | N/A | N/A | | CF-252 | Process control,
analysis, well
logging,
Safety
NationalSecurity,
Medical | ORNL & RIAR
(Russia) | Dual source - capacity
problem – all RIAR
production sold until 2010 | Apparent (6-9 month) gap between current available supply and industry demand. | 1 | 1 | 1 | ORNL – has capacity – Zero funding – current material in the reactor needs funding for the 9 month process exercise 4 year campaign needs to be examined | Long term planning Definition of "Full cost recovery" so industry can adjust their business plans to accommodate pricing increases | | CI-36 | Health Physics
Geochem | None | Last produced late 1970s
(Canada – Nordion) | No known current production | 1 | 1 | 3 | Processing difficulties after irradiation | Reactor irradiation | | Cm-244 | Analysis | ORNL & RIAR | ОК | Waste disposal pathway | 2 | 2 | 2 | None | Not an issue | | Co-57 | Process Control,
Analysis, NDT,
Mineralogy | Russia, Europe | Multiple Sources | Ok | 2 | 2 | 2 | N/A | Multiple Cyclotrons | | Cs 137 | Process control,
Well logging,
Formation
evaluation,
Agricultural | Russia | No current U.S. production
Russian supply at risk | No new fission product separation | 1 | 1 | 1 | Specific activity
concerns viz-a-viz
feedstock age | US fission product separation | | | Irradiation
Health Physics | | | | | | | | | |--------|--|--|-------------------------|--|---|---|---|--|---| | Fe-55 | Analysis,
Process Control,
Geochem | ORNL, MURR | Multiple sources | Ok | 3 | 2 | 3 | N/A | N/A | | Gd-153 | Health Physics,
Process Control | Russia | Sole source | Reliable/availabl
e supply | 2 | 2 | 1 | | ORNL & INL have produced and could restart production | | Ge-68 | Health Physics | Multiple
Cyclotrons | Multiple sources | Ok | 2 | 2 | 1 | | No issues | | H-3 | Analysis, Light
Sources,
neutron targets | Russia, DOE,
Ontario Hydro | Multiple sources | Ok | 1 | 1 | 1 | Safe guard issues | | | Ir-192 | Non-destructive testing | EEC reactors +
many Russian,
Nordion | Zero production in U.S. | Infrastructure
and cost
effectiveness
within U.S. | 1 | 1 | 1 | Cost transparency & facility infrastructure | ORNL & INL have produced and could restart production | | Kr-85 | Process control, safety | Russia | Single sourced | Fission process
Reliable source | 1 | 1 | 2 | fission product separation – requires isotopic enrichment via centrifuge or thermo diffusion | ORNL could produce | | Ni-63 | Analysis | ORNL, RIAR | Multiple sources | Ok | 2 | 2 | 1 | N/A | N/A | | Pb-210 | Health physics &
Geochem | None | | Reliable source | 1 | 1 | 3 | Decay product of Ra-
226 | Anybody with a hot cell | | Pm-147 | Process control,
Safety, Light
sources | Russia | Single source | No fission product separation in U.S. | 2 | 1 | 1 | Fission product separation | ORNL & INL reactor irradiation | | Po-210 | Process Control,
Safety, Health
Physics | Russia | Single supply | Single user in U.S. | 3 | 3 | 3 | | ORNL & INL reactor irradiation | | Ra-226 | Process control,
Health Physics,
Isotope
Production | None | None | No available supply | 1 | 3 | 3 | See Lead-210 – required for production | Decay product | | Se-75 | NDT, Health
Physics, Medical | ORNL, RIAR,
MURR | ОК | ОК | 2 | 2 | 2 | | | | Si-32 | Geochem,
Ocean Science | None | No availability | | 1 | 1 | 2 | | ORNL, Canada | | Sm-151 | Analysis | Russia | Available | Ok | 2 | 2 | 3 | N/A | N/A | | Sr-90 | Process Control,
Geochem, | Russia, PNNL | Available | Ok | 2 | 2 | 1 | Minimal availability ex.PNNL | US fission product separation | | Th-228 | Health Physics | None | Not Available | N/A | 1 | 1 | 3 | Requires U-232 | | | Th-230 | Health Physics,
Geochem | None | Not Available | N/A | 1 | 1 | 3 | Requires U-232 | | | U-232 | Geochem | None | Not Available | N/A | 1 | 1 | 1 | Required for processing | Isotope separation | | | | | | | | | | other isotopes | | |---------------------------------|---------|---|--|---|---|------------------------------------|-------------------------------------|--|---| | Mo-99 | Medical | NRU, Canada
Petten,
Netherlands
Safari, South
Africa
BR-2, Belgium | Medium and long term questionable | Intermediate and long term supply with Maple Project cancellation and license expiration of NRU and HIR | 2 | 1 | 1 | FDA sNDA or CBE filing
for existing mfr to
convert to LEU, or DMF
for new supplier w/
sNDA for generator mfr | MURR and BWTS
have Proposed
LEU production
techniques | | Ge-68 | Medical | LANL, BLIP,
Cyclotron Co,
iTHEMBA | Radiochemical Only | | 2 | If product approved 1, otherwise 2 | 2 | | | | Ge-68/Ga-
68 generator | Medical | The Cyclotron
Co., Eckert &
Ziegler | Radiochemical Only | Current
generators not
sterile or
pyrogen-free | 2 | If product approved 1, otherwise 2 | 1 | FDA hurdles
Long shelf-life generator
does not have attractive
market potential | Potential work for
others DOE Project
to develop sterile
pyrogen free
generator | | Cu-67 | Medical | Trace Life
Sciences, BLIP,
LANL | DMF, Radiochemical | If FDA drug
approved,
address capacity | 2 | If product approved 1, otherwise 2 | 1 | Scale-up production if drug FDA approved | Scaleup for production quantities and backup suppliers | | Lu-177 | Medical | ORNL, MURR,
Petten | Radiochemical Specific activity and radionuclide purity is an issue, Radiopharmaceutical purity in the near future | Desire carrier free production | 2 | 2 | 1 | Carrier free and radionuclidic impurities, FDA hurdles | Project to develop
and evaluate
carrier free
projection and
scale up | | Ac-225 | Medical | ITU
(Karlsruhe)OR
NL | Limited Availability | Need additional
stock of Th-229 | 1 | 1 | If product approved 1 otherwis e 2 | Needs to be extracted
from U-233 weapons
waste, or produced on
reactor or cyclotron | Congressional ban
needs to be lifted to
allow recovery of
Th-229 from U-233
waste | | At-211 | Medical | NIH,
Duke
Univ of
Washington | Limited Availability,
Radiochemical grade only | Lack of local
structure for
scale-up
production | 1 | 1 | If product approved 1, otherwis e 2 | Availability of 25 MeV or
greater (α,2n) on Bi-209
(100%), FDA hurdles,
cGMP production | Build Infrastructure
for production and
commercial scale-
up | | Research
Medical
Isotopes | Medical | Many | Limited due to lack of funding | | 1 | 1 | | Lack of trained personnel and facilities | Projects to increase funding, training and facilities | ## Working List for National Security Science Working Sub-Group Code: Supply / Demand Impact: economic / multiple industries / multiple populations 1. Demand > supply 1. Massive 2. Demand = supply 2. Moderate 3. Demand < supply 3. Minimal | Nuclides | Main Applications | Producer | Status of Supply | Missing | Current /
Future
Demand | Impact | Special
Considerations | Options for Increased
Availability | |----------|--------------------------|-----------|------------------------|--|-------------------------------|--------|---|--| | He-3 | Detector
technology | DOE-DP | 1 | Purified
materials | 1 | 1 | Detector material.
No helium no
neutron detectors | Investigate possible release in existing inventories | | Ni-63 | Detector technology | DOE-NE | 1 (supply lags demand) | | 1 | 2 | | | | Cf-252 | Calibration
standard | DOE-NE/DP | 1 | Processing facilities. | 1 | 1 | ANSI standard for certifying radiation detection instruments. | Reinstate irradiation and processing | | Am-241 | Calibration
standard | DOE-NE/DP | 1 | Capital
investment | 2 with investment | 2 | ANSI standard for certifying radiation detection instruments. | Reinstate processing | | Co-57 | Calibration
standard | | 3 | | 3 | 3 | ANSI standard for certifying radiation detection instruments. | | | Ba-133 | Calibration
standards | DOE-NE | 2 | | 2 | 3 | ANSI standard for certifying radiation detection instruments. | | | Th-228 | Calibration
standard | DOE-DP | 1 | No current efforts for separation | 1 | 1 | ANSI standard for certifying radiation detection instruments. | | | Co-60 | Calibration
standard | DOE-NE | 3 | Infrastructure
and cost
effectiveness
within U.S. | 3 | 3 | ANSI standard for certifying radiation detection instruments. | | | U-232 | Calibration
standard | DOE-DP | 1 | | 1 | 2 | ANSI standard for certifying radiation detection instruments. | | | Co-57 | Short-lived RDD | | 3 | Reliable | 3 | 3 | | | |--|---|---------------------|-----------------------|----------------------|---|---|--|--| | | surrogate | | | source | | | | | | Sr-85 | Short-lived RDD surrogate | DOE-NE | 3 | | 3 | 2 | | | | Others | Short-lived RDD surrogate | DOE-NE/DP | 2 | | 2 | 3 | | | | Reference
materials
(multiple
isotopes) | Nuclear forensics | DOE | 1 | Inadequate supplies | 1 | 1 | | | | U-233 | Isotope dilution
spikes/nuclear
forensics | DOE-DP | 2 | | 1 | 1 | | | | Pu-242/244 | Isotope dilution
spikes/nuclear
forensics | DOE-DP | 1 for highly enriched | High purity required | 1 | 1 | High purity required | Reestablish mass separator capability for radioactive and stable isotopes. | | Th-229 | Isotope dilution spikes/nuclear forensics | DOE-DP | 2 | High purity required | 2 | 1 | High purity required | Reestablish mass separator capability for radioactive and stable isotopes. | | Am-243 | Isotope dilution spikes/nuclear forensics | DOE-DP | 1 for highly enriched | High purity required | 1 | 1 | High purity required | Reestablish mass separator capability for radioactive and stable isotopes. | | Np-226 | Isotope dilution
spikes/nuclear
forensics | DOE-DP | 1 for highly enriched | High purity required | 1 | 1 | High purity required | Reestablish mass separator capability for radioactive and stable isotopes. | | Pu-236 | Isotope dilution spikes/nuclear forensics | DOE-DP | 1 for highly enriched | High purity required | 1 | 1 | High purity required | Reestablish mass separator capability for radioactive and stable isotopes. | | Multiple
common
isotopes | Emergency
responder
training | Multiple
sources | 2 | | 2 | 3 | | | | Multiple
common
isotopes | Reachback
training | Multiple
sources | 2 | | 2 | 3 | | | | Rb-83 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | | 2 | 1 | Capability
maintenance
essential | | | Y-88 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | | 2 | 1 | Capability
maintenance
essential | | | Zr-88 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | |---------------------------------|--|--------|--------|--------|---|----------------------------------| | Rh-101 | Weapons physics/ stockpile stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Ag-105 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Eu-149 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Tb-157 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Lu-173 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Ta-179 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | W-181 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Au-195 | Weapons
physics/ stockpile
stewardship | DOE-DP | 2 | 2 | 1 | Capability maintenance essential | | Multiple
reactor
isotopes | Weapons
physics/ stockpile
stewardship | DOE-DP | 1 or 2 | 1 or 2 | 1 | Capability maintenance essential |